Global roundings of sequences

نویسنده

  • Benjamin Doerr
چکیده

For a given sequence a = (a1, . . . , an) of numbers, a global rounding is an integer sequence b = (b1, . . . , bn) such that the rounding error |∑i∈I (ai − bi )| is less than one in all intervals I ⊆ {1, . . . , n}. We give a simple characterization of the set of global roundings of a. This allows to compute optimal roundings in time O(n logn) and generate a global rounding uniformly at random in linear time under a non-degeneracy assumption and in time O(n logn) in the general case.  2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorics and Algorithms on Low-Discrepancy Roundings of a Real Sequence

We discuss the problem of computing all the integer sequences obtained by rounding an input sequence of n real numbers such that the discrepancy between the input sequence and each output binary sequence is less than one. The problem arises in the design of digital halftoning methods in computer graphics. We show that the number of such roundings is at most n + 1 if we consider the discrepancy ...

متن کامل

On Geometric Structure of Global Roundings for Graphs and Range Spaces

Given a hypergraph H = (V,F) and a [0, 1]-valued vector a ∈ [0, 1] , its global rounding is a binary (i.e.,{0, 1}-valued) vector α ∈ {0, 1} such that | ∑ v∈F (a(v)−α(v))| < 1 holds for each F ∈ F . We study geometric (or combinatorial) structure of the set of global roundings of a using the notion of compatible set with respect to the discrepancy distance. We conjecture that the set of global r...

متن کامل

The Structure and Number of Global Roundings of a Graph

Given a connected weighted graph G = (V,E), we consider a hypergraph HG = (V,PG) corresponding to the set of all shortest paths in G. For a given real assignment a on V satisfying 0 ≤ a(v) ≤ 1, a global rounding α with respect to HG is a binary assignment satisfying that |∑v∈F a(v) − α(v)| < 1 for every F ∈ PG. We conjecture that there are at most |V |+1 global roundings for HG, and also the se...

متن کامل

Generating Randomized Roundings with Cardinality Constraints and Derandomizations

We provide a general method to generate randomized roundings that satisfy cardinality constraints. Our approach is different from the one taken by Srinivasan (FOCS 2001) and Gandhi et al. (FOCS 2002) for one global constraint and the bipartite edge weight rounding problem. Also for these special cases, our approach is the first that can be derandomized. For the bipartite edge weight rounding pr...

متن کامل

gpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences

Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2004